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Continuous phase transition in a spin-glass model without time-reversal symmetry
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We investigate the phase transition in a strongly disordered short-range three-spin interaction model char-
acterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is
well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case
this picture turns out to be modified. The model presents a finite temperature continuous phase transition
characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the
nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model
in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
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I. INTRODUCTION

Nowadays there is large amount of research being d
on the problem of the glass transition from the perspective
spin-glass theory@1,2#. This interest originates from old ob
servations by Kirkpatrick, Thirumalai, and Wolynes@3#, who
found a striking similarity between the dynamical equatio
of some mean-field spin-glass models and the mode-coup
equations for glasses. The mode-coupling equations are c
acterized by the presence of a dynamical singularity a
temperatureTd below which spin-spin correlation function
do not decay to zero in the infinite time limit signaling th
breaking of ergodicity@4#. Above but close toTd , the cor-
relation functions display a plateau which separates two
ferent relaxational regimes~the a and theb processes!. The
family of models that show this behavior are those with
one step of replica symmetry breaking~models with an infi-
nite number of breaking steps describe better the spin-g
behavior found in strongly disordered magnets!. These mod-
els are characterized by two singularities or transition te
peratures. One transition is purely dynamical and co
sponds to the mode-coupling transitionTd previously
described. The other transition atTc,Td is thermodynamic
and corresponds to a temperature below which replica s
metry breaks and the configurational entropy~also called
complexity! vanishes. The transition atTc has features of
both first- and second-order transitions like a discontinuity
the Edwards-Anderson order parameter and a finite jum
the specific heat.

*Electronic address: giorgio.parisi@roma1.infn.it
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It is widely accepted that the origin of the dynamical tra
sition atTd ~where the relaxation time diverges and ergod
ity breaks! originates from the presence of an exponentia
large number of states~exponentially large with the system
size! which trap the system for exponentially large tim
forbidding the system to reach the equilibrium Gibbs me
sure. But it is also clear~and this was also recognized as
strong limitation in the original mode-coupling theory! that
equilibrium below Td should be restored in finite
dimensional systems where activated or nucleation proc
~i.e., jumps over finite free-energy barriers! takes place in a
finite time. What is the final theory which correctly describ
the nucleation processes taking place in glasses is one o
major open problems. The behavior ofTc in the presence of
short-range interactions is less clear. According to the me
field picture, the transition atTc ~where replica symmetry
breaks! could well survive in finite dimensions. AtTc the
configurational entropy would still vanish. This scenario
merely ~but now rephrased in the spin-glass language! the
Adam-Gibbs-DiMarzio scenario~hereafter referred to a
AGM! for the ideal glass transition@5,6#.

On top of this connection between the spin-glass the
and mode-coupling theory, a very interesting connection
also been established between the statics and dynamic
glassy systems in the off-equilibrium regime. In this case,
equilibrium order parameter for spin glasses@the so-called
P(q) function# is intimately related to the fluctuation
dissipation ratio@2#. This link between statics and dynamic
originally suggested by the analysis of exactly solva
mean-field spin glasses@7,8#, is actually supported by exten
sive numerical simulations@9# and general arguments base
on the assumption of linear-response theory applied to sh
range spin-glass models@10#.
58 ©1999 The American Physical Society
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PRE 60 59CONTINUOUS PHASE TRANSITION IN A SPIN-GLASS . . .
All these previous studies cannot predict how short-ra
corrections change the mean-field behavior. And in parti
lar, it is unclear how the AGM scenario typical of a firs
order spin-glass transition is modified in finite dimensio
The answer may crucially depend on the presence
quenched disorder in the system and the mean-field cri
behavior can be significantly altered in finite dimensio
Here, we will see that the mean-field scenario in the man
of AGM does not survive in finite dimensions for a certa
class of models.

A preliminary account of some parts of this work h
recently appeared in a different context@11# where a Binder-
like parameter was proposed to study replica symme
breaking transitions. Also, different cases of the pres
model have already been studied in Refs.@12–14#. So our
work complements these results, although the case we s
here lacks time-reversal symmetry sharing some feature
the Ising spin glass in a magnetic field.

The paper is divided as follows. In Sec. II we define t
model, and the numerical algorithm is explained in Sec.
In Sec. IV we present the equilibrium results obtained
simulating small systems. In Sec. V we present results
the order parameter and its cumulants. In Sec. VI we g
results for a new parameter~to be defined later! which un-
ambiguously shows the existence of a phase transition.
tion VII is devoted to a discussion of the dynamical prop
ties. Finally, in Sec. VIII, we summarize the main results a
discuss some peculiar features of the present model.

II. THE SHORT-RANGED p-SPIN MODEL

The present model is a short-range generalization of
multispin interaction mean-field Ising spin glass defined
@15,16#

H52 (
( i 1 ,i 2 , . . . ,i p)

Ji 1i 2 , . . . ,i p
s i 1

s i 2
, . . . ,s i p

, ~1!

where the spinss i , 1< i<N (N is the size of the system!
can take the values61 and theJi 1i 2 , . . . ,i p

are quenched

random variables with zero mean and variancep!/(2Np21).
In Eq. ~1!, all possible multiplets ofp spins interact through
the random couplingsJi 1i 2 , . . . ,i p

. Consequently there is n
spatial dimensionality and the model retains its full mea
field character. In order to go beyond mean-field theory
need to suitably modify the model introducing short-rang
interactions in a finite-dimensional lattice. A possible way
modify Eq.~1! is to consider only links which couple neare
neighbors in a finite-dimensional regular lattice. For
stance, we could locate the spins in the vertices of the lat
and consider only a certain set of triangles (p53), a certain
set of squares (p54), and for a generalp, only a certain set
of plaquettes containingp spins of the lattice@17,18#. In the
presence of quenched disorder, such constructions have
considered in several cases@19–21#. In particular, in@21# a
simple cubic lattice withp54 was studied. Although freez
ing behavior was observed, no evidence of a fini
temperature transition was found in three dimensions. Un
tunately, this type of model with binary exchange couplin
has a large ground-state degeneracy causing strong cros
effects~due to the presence of a nontrivial zero-temperat
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fixed point! at low temperatures. Furthermore, in this type
model the lower critical dimension seems to increase withp.
This implies that large dimensions need to be studied in
der to find a phase transition. More work is certainly nec
sary to identify whether the AGM scenario is valid in fini
dimensions for this type of model.

The model we are going to study here is an alternat
way to include short-range corrections. We locateM differ-
ent Ising spinss j

i 1i 2 , . . . ,i D in each site of a regular cubi
lattice. In this notationj enumerates the different spins~it
ranges from 1 toM ) in a given site with coordinates
( i 1 ,i 2 , . . . ,i D), where 1< i 1 ,i 2 , . . . ,i D<L andL is the lat-
tice size of the cubic lattice andD is the dimensionality. The
volume of the system is therefore given byV5LD. The
Hamiltonian is defined as follows:

H5 (
1< i 1 ,i 2 , . . . ,i p<L

(
m51

D

Hlink , ~2!

whereHlink is the Hamiltonian corresponding to the link d
fined by the site (i 1 ,i 2 , . . . ,i D) and the directionm, 1<m
<D. In our notations, a link is a pair (P,m) which couples
the pointP[( i 1 ,i 2 , . . . ,i D) to the nearest-neighbor site i
them directionP1m[( i 1 , . . . ,i m11, . . . ,i D). Note that in
Eq. ~2! each link is counted only once. For each link we su
all the possible groups ofp spins out of the 2M spins located
at nearest-neighboring sites of the lattice~with p<2M ). The
final expression forHlink is given by

Hlink52 (
k51

p

(
1<ai<M

(
1<bi<M

3Jlink
(a1 , . . . ,ak ,b1 , . . . ,bp2k)

3sa1

P sa2

P
•••sak

P sb1

P1msb2

P1m
•••sbp2k

P1m . ~3!

The couplingsJlink
(a1 , . . . ,ak ,b1 , . . . ,bp2k) are random vari-

ables~which take the values61) uncorrelated for different
links (P,m) and sets ofp spins (a1 , . . . ,ak ,b1 , . . . ,bp2k).
Other versions of the model ~for instance,
Jlink

(a1 , . . . ,ak ,b1, . . . ,bp2k)
5J(a1 , . . . ,ak ,b1 , . . . ,bp2k), i.e., transla-

tional invariant disorder! are also possible and they cou
have different properties.

As we observed in the Introduction, the present model
received considerable attention quite recently. A prelimin
short account of our work was presented in@11#. In three
dimensions, an exhaustive numerical study of the statics
the dynamics has been done in the caseM54,p54 @12#
while the caseM53,p54 has been studied in@13#. So the
main results on this model~except@11#! were obtained for
the p54 model. The study of the Gaussian propagat
around the mean-field limitM→` as well as the 1/M ex-
pansion were considered in@14#. The case we study here ha
the crucial property that the Hamiltonian~3! does not have
the symmetry under time reversal~i.e., the global symmetry
s i→2s i , ; i ).
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Here we will present exhaustive results for the caseM
52, p53 in D54. We have chosen these parameters
the following reasons.

~i! p53. This is the simplest case that lacks time-rever
symmetry. We expect in this case clearer results about
existence of replica symmetry-breaking transitions in sh
range systems.

~ii ! M52. This is the simplest nontrivial case. Larg
values ofM require always more computational effort.

~iii ! D54. To be sure that we find a finite-temperatu
phase transition, we have studied a large dimensiona
compatible with a reasonable computational effort.

For p53, M52 the general Hamiltonian Eq.~2! reads

H52(
i 51

V

(
m51

D

~J(11,10)
i ,m s1

i s2
i s1

i 1em1J(11,01)
i ,m s1

i s2
i s2

i 1em

1J(10,11)
i ,m s1

i s1
i 1ems2

i 1em1J(01,11)
i ,m s2

i s1
i 1ems2

i 1em!, ~4!

where the (em ;m51, . . . ,D) denote the different unit vec
tors in aD-dimensional lattice. TheJ’s are binary uncorre-
lated random variables and we will consider periodic bou
ary conditions.

Note that the model~4! has three spin interactions. On
would simply expect the transition to belong to the class
f3 theories. As we will see in the following sections, there
indeed a phase transition occurring in the present model.
absence of time-reversal symmetry in this model has cru
implications on the type of phase transition. We anticip
that the transition is related to the breaking of ergodicity
low temperatures, a consequence of the breaking of rep
symmetry, the crucial symmetry to describe strongly dis
dered systems. We will try to clarify and give evidence
this point in forthcoming sections.

III. THE NUMERICAL ALGORITHM

We have studied the model in four dimensions using
parallel tempering method@22,23#. This is a good numerica
method to equilibrate disordered systems at low temp
tures. Contrary to the simulated tempering method@24,25#,
in this algorithm it is not necessary to determine the f
energy at different temperatures to reach equiprobability
the occupancies of these temperatures. Although the par
tempering is a very efficient method to surmount energy b
riers, it is not clear how good the performance of the alg
rithm is in the presence of entropy barriers~i.e., when relax-
ation to equilibrium takes place along narrow channels
gutters in phase space!.

The implementation of this algorithm is quite easy. It h
been widely explained in the literature~for instance, see the
reviews@23,26,27#! and we will limit ourselves to sketch th
main steps of the algorithm. We consider a set ofNT copies
or replicas of the same system that stay at different temp
tures (Ti ; i 51, . . . ,NT). Each copy or replica is then spec
fied by a pair (C,i ), whereC denotes the microscopic con
figuration ~i.e., the values of all the spins! and the
temperatureTi of the copyi. We can then construct a Mar
kov process in the space of configurations plus temperat
which satisfies ergodicity and detailed balance by allow
the following moves.
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~i! Change configuration at fixed temperature: (C,i )
→(C8,i ) with probability

P@~C,i !→~C8,i !#5 min„1,exp$2b@H~C8!2H~C!#%….
~5!

~ii ! Exchange configurations of two systems at tempe
turesb i ,b j : $(C,i ),(C8, j )%→$(C8,i ),(C, j )% with probability

P@$~C,i !,~C8, j !%→$~C8,i !,~C, j !%#

5min„1,exp$2~b i2b j ![H~C!2H~C8!#%….

~6!

The first type of move is the usual change of configurat
at fixed temperature in the Monte Carlo method. The sec
move prevents the system from getting trapped in deep m
stable minima. With this algorithm, configurations which a
far from each other can be reached by allowing a single c
of the system to extract energy from other copies throug
coupling mechanism step~2!, Eq. ~6! induced by the dynam-
ics itself. Plainly speaking, the rest of the copies or replic
play the role of an external bath for a given copy. If a giv
copy remains trapped in a deep minima of the free energ
can escape by extracting energy from the rest of the cop
The full Markov chain reaches thermal equilibrium when
temperatures are equally occupied and for each tempera
the conditioned probability distributionP(Cu i ) is a Boltz-
mann distribution at temperature 1/b i . In this way one simu-
lates the model at different temperatures in the same
while being always in thermal equilibrium at different tem
peratures.

The time needed for the Markov process to reach the
tionary distribution ~i.e., the thermalization time! depends
mainly on the choice of the set of temperatures and also
the ratio between the number of moves of the first~5! and
second type~6!. To solve the first problem, we have chos
a set of temperatures equally spaced inb51/T in such a way
that moves of the second type~6! do not occur with a too
small probability at low temperatures. On the other hand
uncorrelate the configurations as much as possible~in order
to explore maximally distant configurations!, it is convenient
that the copies reach high enough temperatures. This is
complished by enlarging the set of temperatures in the si
lation up to twice the value of the critical temperature. F
the present model we simulated 25 temperatures ran
from T52.0 up toT55.0 ~as we will see, this corresponds t
a window of temperatures covering the region 0.75Tc
22Tc). As previously remarked, a good thermalization c
be achieved by choosing an appropriate number for the r
between the number of tempering moves of the first a
second type. If the number of moves of the second type
too small, then the system is not able to efficiently decor
late and only a small number of excursions into the hig
temperature region are performed. In the other extreme,
system decorrelates too fast and does not efficiently sam
the landscape at a given temperature. We have tried sev
schemes intermediate between these two extremal case
we have found that one move of the second type for each
moves of the first type is a good compromise which e
ciently thermalizes reasonable sizes.
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PRE 60 61CONTINUOUS PHASE TRANSITION IN A SPIN-GLASS . . .
We did extensive simulations forL53,4,5,6 with 215

532 768 MCS (L53,4) and 2185262 144 (L55,6) MCS at
each temperature. For sizesL53,4,5,6 we studied 1000, 600
300, 100 samples, respectively. A preliminary study for a
of five samples showed that this number of steps was eno
to reach thermal equilibrium for the selected sizes for
range of temperatures studied. This preliminary study tur
out to be crucial to determine the smallest range of temp
tures which allows the system to equilibrate. If the range
temperatures selected extends down to too low temperat
then thermalization is hardly achieved. This means that
full Markov process associated to the parallel tempering
gorithm does not reach the stationary Boltzmann soluti
Then, there is no guarantee that thermalization is achie
either at low or at high temperatures.

IV. THERMODYNAMIC OBSERVABLES

Preliminary research of the evidence for a phase transi
includes the study of the temperature behavior of exten
quantities such as the internal energy or the specific hea
Figs. 1 and 2 we show the internal energy and the spe
heat averaged over the samples for different sizes as a f
tion of temperature. The energyE and the specific heatC
were computed using the expression

E5^H&, ~7!

C5
b2

N
~^H 2&2^H&2!. ~8!

In what follows,^ & stands for Gibbs average and ( )f̄or
disorder average. We note the absence of any jump in
internal energy as well as divergence or jump of the spec
heat. This is a general result in phase transitions in stron
disordered systems and also applies in the present mode
important feature in Fig. 2~also observed in other studie
@12#! is the presence of a maximum in the specific heat a
temperature (.3.2) much higher thanTc ~as we will see

FIG. 1. Energy versus temperature (L53,4,5,6 correspond to
long dashed, short dashed, dot, and solid lines!. Error bars are
shown forL56.
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later,Tc.2.62). At Tc the specific heat is continuous so w
expect the specific-heat exponenta to be negative.

V. THE ORDER PARAMETER

It was shown long ago by Edwards and Anderson that
appropriate order parameter for spin glasses is a measu
the temporal freezing of the local variables~in our case, the
spins! of the system. In the general framework of spin-gla
theory the order parameter is computed through the introd
tion of replicas in the system. This is the natural way
introducing the notion of a distance between two configu
tions in phase space. We take two replicas of the same
tem $s i ,t i% @i.e., two identical Hamiltonians in Eq.~4! with
identical realization of the couplingsJ’s#. Then we define the
global overlapQ between the two replicasNQ5( i 51

N s it i

and evaluate its probability distributionPJ(q) averaged over
the Gibbs measure (^ &)

PJ~q!5^d~q2Q!&. ~9!

In our specific model the overlap isNQ5( i 51
N (s1

i t1
i

1s2
i t2

i ), wheres1
i ,s2

i andt1
i ,t2

i occupy the sitei in the two
different replicas, respectively.PJ(q) gives the probability
that two equilibrium configurationss i ,t i have an overlapq.
According to the mean-field scenario~the validity of which
we would like to check for the present model!, ergodicity
breaks at low temperatures and the phase space splits up
a large number of single ergodic components or states.
barriers separating these components diverge with the siz
the system suggesting that a symmetry is broken. This s
metry is generally referred to as replica symmetry and i
the symmetry under the group of permutations of a fin
number of replicas. Somehow, this symmetry is artificial~ac-
tually, it emerges from the use of the replica trick, a gene
method to deal with the averaging of the logarithm of t
partition function in disordered systems!. But its physical
meaning is quite appealing. Different equilibrium configur
tions s i ,t i can take different values according to the bas
of attractions~corresponding to different ergodic compo

FIG. 2. Specific heat versus temperature (L53,4,5,6 correspond
to long dashed, short dashed, dot, and solid lines!. Error bars are
shown forL56.
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62 PRE 60G. PARISI, M. PICCO, AND F. RITORT
nents! to which they belong. The functionPJ(q) is highly
nontrivial and this is a signature that different configuratio
quite far from one another in the phase space contribute
a finite weight to the equilibrium partition function. Cons
quently, different states always have the same free ene
internal energy, and entropy per site but they differ only
the structure of their typical configurations. This is signa
by a nontrivialPJ(q) distribution~i.e., with several peaks a
different values ofq).

Another general consequence of the splitting up of
phase space into different states is the possible existenc
chaotic effects in the equilibrium phase@28,29#. A small per-
turbation in the Hamiltonian can change the shape of
states as well as reshuffle their Boltzmann weights. A
perturbing the Hamiltonian, the new configurations can
very different from the initial ones. One consequence of t
effect is the existence of non-self-averaging quantities.
particular, if we change completely the microscopic reali
tion of the disorder in the original Hamiltonian@for instance,
by changing the couplingsJ in Eqs. ~3! and ~4! @31##, the
new equilibrium states differ completely from the previo
ones. In this case we do not add energy to the system~the
new and the old states always have the same energy per!
but the reshuffling of the Boltzmann weights of the differe
states is enough to change completely the form of thePJ(q).
Then, the PJ(q) is strongly non-self-averaging, a resu
which has been proved in mean-field theory and which
would like to check also in short-range systems.

The purpose of this section is to show how the study
the P(q)5PJ(q)̄ averaged over the disorder can yield e
dence for a phase transition in the present model. In the
section we will show that the non-self-averaging characte
the PJ(q) can be used as an independent check for the t
sition.

A good way to characterize theP(q) is through its mo-
ments, in particular the first momentq̄, the second cumulan
which directly yields the spin-glass susceptibilityxSG, the
skewnessY, and the Binder parameterZ. More precisely, if
we define the average@ f (q)#5*dq f(q)P(q) @where P(q)
5PJ(q)̄ ] , then we have

xSG5V†~q2@q# !2
‡, ~10!

Y5
†~q2@q# !3

‡

†~q2@q# !2
‡

3/2
, ~11!

Z5
1

2 S 32
†~q2@q# !4

‡

†~q2@q# !2
‡

2D . ~12!

In Figs. 3, 4, 6, and 7 we show@q#, xSG, Y, andZ as a
function of temperature for different sizes. In Fig. 3 we sh
the first moment as a function of temperature. In the prese
of time-reversal symmetry,@q# vanishes~as well as the skew
nessY) but not in the present case. Note that the curve of@q#
as a function of temperature is smooth without any sign o
jump or discontinuity. In mean-field spin-glass transitio
~continuous or discontinuous!, this result is expected becaus
the jump in@q# is proportional to (12m)qEA , whereqEA is
s
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the Edwards-Anderson parameter@the maximum value ofq
such thatP(q)Þ0] andm is the replica symmetry-breakin
parameter~the size of the blocks in the breaking ansatz, s
@30# for general introductory textbooks!. In continuous rep-
lica symmetry-breaking transitionsqEA vanishes atTc , but
in first-order replica symmetry-breaking transitionsqEA is
finite at Tc andm(Tc)51. In both cases there is no jump i
@q#.

The results for the spin-glass susceptibility are more
teresting. Experimentally, spin glasses show a divergenc
the nonlinear susceptibilityxnl defined through the expansio

M ~H !5x0H1xnlH
31O~H5!. ~13!

It can be generally shown@30# that the nonlinear suscep
tibility is related to the spin-glass susceptibility defined
Eq. ~10!. Although the linear coefficientx0 in the expansion
~13! does not show any indication ofTc , the behavior of the
nonlinear termxnl is singular atTc . In mean-field spin
glasses with continuous transition,xSG shows a power-law
divergence atTc . Contrarily, in mean-field spin glasses wit

FIG. 3. First moment@q# versus temperature (L53,4,5,6 corre-
spond to long dashed, short dashed, dot, and solid lines!. Error bars
are shown forL56.

FIG. 4. xSG versus temperature. From bottom to top,L
53,4,5,6.
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PRE 60 63CONTINUOUS PHASE TRANSITION IN A SPIN-GLASS . . .
discontinuous RSB,xSG shows a finite jump atTc . This last
feature has been claimed to be the explanation for the vi
tion found in experiments at the glass transition for one
the two Ehrenfest relations@32#. BelowTc , xSG is infinite in
both cases. This result is related to the nontrivial characte
the P(q) which has contributions from different values ofq.
In Fig. 4 we showxSG for different sizes as a function ofT.
Indeed, our results in Fig. 4 show an algebraic divergenc
the spin-glass susceptibilityxSG and a least-squares fit of th
data in the high-temperature region~where finite-size effects
are negligible! yields xSG;(T2Tc)

2g with Tc.2.63 and
g.1.0. A finite-size scaling plot of the data forxSG/L22h

;(T2Tc)L
1/n is shown in Fig. 5 withn. 2

3 , h. 1
2 . This is

in agreement with the exponents relationg5(22h)n and
with the previously estimated value ofg. Using the hyper-
scaling relationa522Dn we geta.2 2

3 in agreement with
the absence of any singularity or jump in the specific h
~see Fig. 2!. An independent measure ofn will be obtained in
the following section. Anyway, from these first data, we m
conclude that the divergence ofxSG is related to the diver-
gence of a correlation length atTc .

Figures 4 and 5 are the first evidence for a phase tra
tion in the model. Figures 6 and 7 show the skewness and

FIG. 5. Finite-size scaling of the spin-glass susceptibility. O
data are compatible withh. 1

2 ,n5
2
3 .

FIG. 6. Skewness versus temperature. From top to bottomL
53,4,5,6.
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Binder parameter as a function of temperature. Becaus
the adimensional character of these quantities, one exp
that they should be universal in the critical point and rela
to the amplitudes of the renormalization-group flow equ
tions. In the large volume asymptotic regime the value of
skewnessY and the Binder parameterZ should be volume
independent atTc . Consequently,Tc should manifest as a
common crossing point of the curves corresponding to
ferent system sizes. A common crossing point can hardly
identified in Figs. 6 and 7. Nevertheless, the fact thatY andZ
do not vanish at low temperatures is a sign of a nontriv
low-temperature phase. Actually these two figures yield lit
information about the transition and it is hard to guess w
is the character of the phase transition. Let us note that s
ingly similar results were obtained for the Ising spin glass
a magnetic field@33#.

Contrary to what is found in models with time-revers
symmetry, theP(q) is not symmetric aroundq50. This
explains why@q# and the skewness~Y! are nonzero. More-
over, the fact thatY,0 is related to the asymmetric chara
ter of theP(q). This is clearly shown in Figs. 8, 9, and 10
Figure 8 shows theP(q) for the largest simulated sizeL

r
FIG. 7. Binder parameter versus temperature. From bottom

top in the high-temperature phase,L53,4,5,6.

FIG. 8. P(q) for L56 at different temperatures~from left to
right, T54.0,3.077,2.66,2.353,2.0).
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56 at different temperaturesT54.0, 3.077, 2.66, 2.353, 2.0
Note that aboveTc the P(q) is Gaussian and develops
nontrivial shape at low temperatures with a nonvanishing
which extends down to values ofq close to zero~the pres-
ence of this tail is clearly appreciated plotting the vertic
axis in a logarithmic scale!.

Except for the fact that theP(q) is not symmetric around
q50, this behavior is reminiscent of what is observed in@12#
for the p54 case. Figures 9 and 10 show theP(q) for dif-
ferent sizes atT52.66 and atT52.0, respectively.

VI. NEW EVIDENCE FOR THE TRANSITION

New evidence for the existence of a phase transition
be obtained from the study of the sample-to-sample fluc
tions of the order-parameter functionPJ(q). Our main ob-
servation originates from recent results obtained by Gu
@34#. Guerra has shown that sample-to-sample fluctuation
the cumulants of the order-parameter distributionPJ(q) are
Gaussian distributed in the thermodynamic limit. Let us n

FIG. 9. P(q) at T.Tc for L53,4,5,6. For the sake of clarity
we show the error bars only forL56 and only for some values o
q.

FIG. 10. P(q) at T52.0 for L53,4,5,6. Errors are shown fo
L56, for some values ofq.
il
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n
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of

define a sample-dependent~i.e., J dependent! susceptibility
through

xSG
J 5V~^q2&2^q&2!. ~14!

Note thatxSG
J is different fromxSG defined in Eq.~10!. It

can be proved@34# that the following relationship is fulfilled
in spin glasses belowTc :

G5
~xSG

J !22~xSG
J !2

V2
Š~q2^q&!4

‹2~xSG
J !2

5
1

3
, ~15!

where, as before,( ) means average over the quenched d
order.

The interest of defining the parameterG is that it vanishes
above the transition temperature in the disordered ph
where sample-to-sample fluctuations of thePJ(q) disappear
in theV→` limit. Similar information to that obtained from
Eq. ~15! can also be gathered from the sample-to-sam
fluctuations ofxSG

J ,

A5
~xSG

J !22~xSG
J !2

~xSG
J !2

. ~16!

In principle, Eq.~16! also yields nontrivial behavior in the
low-temperature phase even though~in contrast toG) it does
not necessarily converge~in the thermodynamic limit! to a
temperature-independent value. Both parameters (A andG)
are good indicators of the transition although onlyA gives a
precise answer to the question of whether the order par
eter is self-averaging or not. The reason@35# is thatG may
be finite even when the numerator and denominator in
~15! vanish. ActuallyA is the numerator ofG so it gives
precise information as to whether self-averaging is satis
@36#.

Note thatG is a parameter which plays the same role
the usual Binder parameterg in ferromagnets and is given~in
the V→` limit ! by G(T)5(1/3)@12QH(T2Tc)#, where
QH is the Heaviside theta function. In RSB transitions, E

FIG. 11. ParameterG for L53,4,5,6 ~open circles, triangles
diamonds, and crosses, respectively!.
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~15! goes to zero~as the sizeV increases! as 1/V for T.Tc
but converges to a finite value forT,Tc . We expect the
critical temperature~where RS breaks! to be signaled by the
crossing of the different curves corresponding to differ
lattice sizes.

Our results forG and A are shown in Figs. 11 and 12
Both figures show essentially the same result, i.e., the cu
for G and A for different sizes display a common crossin
point located approximately atTc.2.63 in agreement with
the result derived in the preceding section from the div
gence of the spin-glass susceptibility. Assuming for the
rameterG the following scaling behaviorG(T)5Ĝ(L/j)
with j;(T2Tc)

2n, then (dG/dT)T5Tc
;L1/n. In Fig. 13 we

show the scaling behavior forA andG. The scaling plots for
A and G yield a more precise fit to the critical exponentn
because it involves only one free parameter (Tc was obtained
looking at the crossing of the different curves!. A good esti-
mate forn yieldsn. 2

3 for bothA andG but precision is not
good enough to exclude a slightly smaller value~such asn
5 1

2 ). The value2
3 is in good agreement with the one o

tained from the divergence of the spin-glass susceptibilit
Figures 11 and 12 clearly suggest that replica symm

FIG. 12. ParameterA for L53,4,5,6~open circles, rhombi, tri-
angles, and crosses, respectively!.

FIG. 13. ParametersA,G for different sizesL53,4,5,6 versus
(T22.62)L3/2.
t

es

-
-

ry

breaking takes place belowTc . This supports the result tha
the breaking of ergodicity is intimately related to the no
self-averaging character of the order parameter. This resu
in contradiction with heuristic arguments by Newman a
Stein@37#, who have suggested that self-averaging should
automatically restored in short-range systems due to
translational invariance symmetry of the lattice.

VII. THE DYNAMICAL EXPONENT Z

Now that we have corroborated the existence of a therm
dynamic phase transition in the model, we would like
learn more about its nature. In particular, we would like
clarify whether the relaxation time~which is analogous to the
shear viscosity of real glasses! shows an anomalous behavio
in the vicinity of the glass region. It is well known that a
activated behavior in the relaxation time is one of the m
characteristics in real glasses. On the other hand, a po
law divergence of the relaxation time is a signature fo
second-order phase transition where a massive mode
ishes.

We have computed the equilibrium time correlation fun
tion C(t) at several temperatures above the estimatedTc .
C(t) is defined through

C~ t !5
1

V (
i 51

V

@s1
i ~0!s1

i ~ t !1s2
i ~0!s2

i ~ t !#. ~17!

Compared to similar studies undertaken in thep54 case
@12,13#, the analysis in the present case turns out to be m
difficult. This is due to the fact that in the absence of tim
reversal symmetry in the Hamiltonian,C(t) does not decay
to zero and there is one more unknown parameter@C(`)#.
To have a reasonable estimate ofz, we did two types of
measures. On the one hand we measuredC(t) and fitted it to
a stretched exponential form

C~ t !5q1~22q!exp„2~ t/t!b
…, ~18!

with three free parametersq @C(`)#, t ~the relaxation time!,
and b ~the stretching exponent!. Note thatC(t) is normal-
ized such thatC(0)52. Figure 14 shows some of the fit
which turn out to be quite good. In this way we got som
estimates fort which unfortunately are not very precise,

FIG. 14. C(t) at b50.26 ~1!, b50.28 (3), b50.30 ~* !, b
50.34 (h), b50.36 ~j!, for one sample withL520.
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determine the value ofz. To be more precise, one shou
include a power-law termt2a multiplying the exponential
term in the fitting function~18! as was done by Ogielsky in
the study of the three-dimensional Edwards-Anderson mo
@38#. Unfortunately, including a term of this type in Eq.~18!
introduces too many free parameters intoC(t), making fits
poorly predictive. Nevertheless, from Fig. 14, we may co
clude that relaxation turns out to be very slow close toTc .

Our values estimated for the relaxation time exclude a
activated behavior. This excludes the existence of a visco
anomaly as well as the existence of two step relaxation p
cesses in this model. The same conclusion was reached i
p54, D53 case by studying theC(t) @12#.

An estimate forz can be obtained by studying the of
equilibrium decay of the order parameter@39# or the internal
energy@40#. This last case has been applied also to the st
of structural glass models@41# as well as in thep54 case
@12#. In this case, one studies the decay of the internal ene
starting from a random initial configuration atT5Tc and
using a fit to a power-law behavior of the following form:

E~ t !5E~`!1At2l. ~19!

Note that this is an off-equilibrium measure which is e
pected to yield the equilibrium dynamical exponent. Und
the assumption that hyperscaling is valid, and using sim
scaling relations, one obtains the exponents relationl5(d
21/n)/z. In Fig. 15 we show the decay of the internal ener
at the estimatedTc . A good fit is obtained withl50.55
60.1, which yieldsz.4.561. This value forz is very simi-
lar to the one found in the Edwards-Anderson model in fo
dimensions. Still, in this model the divergence of the rela
ation time is not fast (zn.3) if compared with that of the
M53,p54 model@12,13# (z.7, zn.661). The value of
zn being not very large in our model~at least compared to
those generally found in spin-glass models in three dim
sions! explains why we succeeded in getting very clean
sults through finite-size scaling for the existence of a ph
transition. Thermalization was easier to achieve.

VIII. DISCUSSION

In this paper we have investigated the critical behavior
a three-spin model in finite dimensions. The motivation w

FIG. 15. Energy versust20.55 at T52.62 for one sample with
L520.
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to understand how short-range effects modify the AG
mean-field scenario for the spin-glass transition. Moreov
the Hamiltonian for the present model (M52,p53) has no
time-reversal symmetry. In the presence of a thermodyna
transition, this lack of time-reversal symmetry has far rea
ing consequences on the nature of the transition.

We have established~through finite-size scaling methods!
the existence of a phase transition without latent heat
with an algebraic divergence of the spin-glass susceptibi
On the other hand, we find indications that the relaxat
time diverges according to an algebraic power law as in
dinary continuous phase transitions excluding the prese
of an activated relaxation time.

Consequently, we are led to the conclusion that the fi
order character of the transition present in the mean-fi
limit ( M→`) is lost in finite dimensions. In particular, ou
resultsn. 2

3 , h. 1
2 , g.1, z.4.5 yield reasonable fits to al

the data. Moreover, these exponents yield a negative v
for the specific-heat exponent in agreement with the fact
there is not jump or divergence in the specific heat atTc .
Note thata vanishes in mean field so the main effect
finite-dimensional corrections is to decrease the value ofa.
A negative value fora was apparently also obtained forp
54 in three dimensions forM53,4. Although large size
simulations inp54,D53 @13# yield a smaller value ofn
~compatible withn52/D and hencea50), we must exclude
this possibility from the absence of any jump in the spec
heat atTc .

Quite long ago, Gross, Kanter, and Sompolinsky, from
solution of the mean-field Potts glass@42#, suggested the
possibility thatn52/D could be valid in finite dimensions
similar to what happens for pure systems~with the corre-
sponding relationn51/D). In particular, the explanation fo
the rounding of the phase transition due to finite-size effe
would be very similar to the explanation valid in first-ord
transitions in pure systems@43,44# but now modified to ac-
count for the presence of randomness. If the transition
finite dimensions were first order, then we would expect
validity of the relationn52/D as well as the absence o
upper critical dimension. Our numerical results tend to d
card this possibility.

Note that the model we are considering here has no ti
reversal symmetry. Consequently, any thermodynamic tr
sition cannot be associated with the breaking of an origi
symmetry of the Hamiltonian. In this respect, the transiti
we are facing closely resembles the mean-field transition
spin glasses in a magnetic field. We believe that the type
transition presented here is one of the most clear example
second-order phase transition in strongly disordered syst
where replica symmetry breaks. Figures 11, 12, and 13 o
good evidence for this result.

Finally, we would like to comment on the behavior of th
entropy of the model as a function of the temperature. O
prominent prediction in the AGM scenario is the collapse
the configurational entropy atTc . Obviously, in the presen
model we do not expect that the configurational entropy v
ishes atTc since the transition is continuous. In Fig. 16 w
plot the total entropy~which are the sum of the configura
tional and its intrastate part! as a function ofb obtained
numerically by integrating the internal energy betweenb
50 andb. As b increases~data are shown betweenb50
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andb50.32), the entropy becomes steadily linear and se
to extrapolate to zero at a finite value. A linear fit to the la
set of data yieldsS(b).5.78(0.3642b), which vanishes at
Tc.2.75, a result strikingly close to the previously estima
value ofTc through finite-size scaling methods. This value
Tc is quite stable against data inclusion or exclusion in
fit. Actually the same linear behavior is observed for t
entropy when plotted versus the temperature. A linear
yields in that caseS(T).0.536(T22.64), a result still very
close to previous estimates ofTc . Consequently, the tota
entropy~and also the configurational entropy! seems indeed
to vanish at a temperature slightly aboveTc . This is non-
sense because aboveTc the entropy must always be finite
We conclude that the entropy must stop decreasing at t

FIG. 16. Entropy of the model versus temperature. The cont
ous line is a linear extrapolation of the last set of points. Data w
obtained simulating a sample withL510. The arrow corresponds t
the estimated value ofTc .
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peratures close toTc and depart from the linear behavio
again. Actually, this is what we expect from the presence
the maximum of the specific heat~Fig. 2!. Using the relation
C5T(]S/]T), we safely predict a breakdown of the line
behavior atT.3.2 (b.0.31) where the entropy should sta
to form a plateau.

To conclude, we have found that short-range effects
some class of models~with nontranslational invariant disor
der! cause the transition to become second order. The typ
transition should be the same as the one expected for
Edwards-Anderson model in a magnetic field. The main d
ference is that, in the last case, the parameter space con
the temperature and the field while in the former case
only parameter which controls the phase transition is
temperature. This implies strong crossover effects in
critical region for the Edwards-Anderson model in a fie
due to the proximity of the zero-field fixed point. Such cros
over effects are not present in the present model, making
determination of the critical behavior much simpler. It wou
be very interesting to extend the research of strongly dis
dered spin models without time-reversal symmetry to ot
cases, such as models with translationally spatial invar
disorder, to understand under which conditions the first-or
character of the mean-field transition survives in finite
mensions.
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