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Continuous phase transition in a spin-glass model without time-reversal symmetry
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We investigate the phase transition in a strongly disordered short-range three-spin interaction model char-
acterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is
well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case
this picture turns out to be modified. The model presents a finite temperature continuous phase transition
characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the
nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model
in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
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PACS numbegps): 05.50+q, 75.50.Lk, 64.60.Cn

I. INTRODUCTION It is widely accepted that the origin of the dynamical tran-

sition atT,4 (where the relaxation time diverges and ergodic-

Nowadays there is large amount of research being dongy breaks originates from the presence of an exponentially
on the problem of the glass transition from the perspective ofarge number of state@xponentially large with the system

spin-glass theory1,2]. This interest originates from old ob- size which trap the system for exponentially large times

servations by Kirkpatrick, Thirumalai, and Wolynk&, who  ¢ohigding the system to reach the equilibrium Gibbs mea-

fc1)tund a Str'km% s;(rjmlapty Ibetweer&t?e d)(/jnt";r\]m|caldequatlolr]ssure_ But it is also cleafand this was also recognized as a
of some mean-Tield Spin-glass Models and the mode-Coupling,., , , jimitation in the original mode-coupling theprpat
equations for glasses. The mode-coupling equations are char-uilibrium below T. should be restored in finite-
acterized by the presence of a dynamical singularity at g4 d

temperaturel 4 below which spin-spin correlation functions dimensional systems where activated or nucleation process
do not decay to zero in the infinite time limit signaling the (_"(?" Jumps over_flnlte f_ree-energy ba_rn}etakes place ina
breaking of ergodicityi4]. Above but close tdT4, the cor- finite time. What is the final theory whlqh correctly.descrlbes
relation functions display a plateau which separates two difthe nucleation processes taking place in glasses is one of the
ferent relaxational regimeihe « and theB processes The ~ Major open problems. The behaviorf in the presence of
family of models that show this behavior are those with ~Short-range interactions is less clear. According to the mean-
one step of replica symmetry breakifigodels with an infi-  field picture, the transition al. (where replica symmetry
nite number of breaking steps describe better the spin-gladyeaks could well survive in finite dimensions. AT. the
behavior found in strongly disordered magnef®hese mod- configurational entropy would still vanish. This scenario is
els are characterized by two singularities or transition temmerely (but now rephrased in the spin-glass langyate
peratures. One transition is purely dynamical and correAdam-Gibbs-DiMarzio scenarighereafter referred to as
sponds to the mode-coupling transitiohy previously AGM) for the ideal glass transitiofb,6].
described. The other transition 8<T, is thermodynamic On top of this connection between the spin-glass theory
and corresponds to a temperature below which replica synand mode-coupling theory, a very interesting connection has
metry breaks and the configurational entro@so called also been established between the statics and dynamics of
complexity vanishes. The transition &, has features of glassy systems in the off-equilibrium regime. In this case, the
both first- and second-order transitions like a discontinuity inequilibrium order parameter for spin glasdéise so-called
the Edwards-Anderson order parameter and a finite jump if?(q) function] is intimately related to the fluctuation-
the specific heat. dissipation ratid 2]. This link between statics and dynamics,
originally suggested by the analysis of exactly solvable
mean-field spin glass€g,8], is actually supported by exten-

*Electronic address: giorgio.parisi@romal.infn.it sive numerical simulationgd] and general arguments based
TElectronic address: picco@Ipthe.jussieu.fr on the assumption of linear-response theory applied to short-
*Electronic address: ritort@ffn.ub.es range spin-glass mode]l&0].
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All these previous studies cannot predict how short-rangédixed poin) at low temperatures. Furthermore, in this type of
corrections change the mean-field behavior. And in particumodel the lower critical dimension seems to increase with
lar, it is unclear how the AGM scenario typical of a first- This implies that large dimensions need to be studied in or-
order spin-glass transition is modified in finite dimensions.der to find a phase transition. More work is certainly neces-
The answer may crucially depend on the presence ofary to identify whether the AGM scenario is valid in finite
guenched disorder in the system and the mean-field criticadlimensions for this type of model.
behavior can be significantly altered in finite dimensions. The model we are going to study here is an alternative
Here, we will see that the mean-field scenario in the manneway to include short-range corrections. We lockteliffer-
of AGM does not survive in finite dimensions for a certain ent Ising spinw;llz """ 'D in each site of a regular cubic

class of models. _ lattice. In this notatiorj enumerates the different spiri
A preliminary account of some parts of this work has anges from 1 toM) in a given site with coordinates
recently appeared in a different cont¢kfi] where a Binder- (1,00 .ip), where I<iy,i,, . .. ip<L andL is the lat-

like parameter was proposed to study replica symmetryrice size of the cubic lattice aridl is the dimensionality. The

breaking transitions. Also, different cases of the presenyqjume of the system is therefore given Me=LP. The
model have already been studied in R¢f2—14. So our  Hamiltonian is defined as follows:

work complements these results, although the case we study
here lacks time-reversal symmetry sharing some features of
the Ising spin glass in a magnetic field.

The paper is divided as follows. In Sec. Il we define the H:1<i iz ] Hiirk )

. . . . . =<lqlo, oy ps ya
model, and the numerical algorithm is explained in Sec. llI.
In Sec. IV we present the equilibrium results obtained by
simulating small systems. In Sec. V we present results fowhereHji, is the Hamiltonian corresponding to the link de-
the order parameter and its cumulants. In Sec. VI we givdined by the sitei(,i,, ... ,ip) and the directionu, 1<=u
results for a new parametéto be defined latérwhich un-  <D. In our notations, a link is a pai,x) which couples
ambiguously shows the existence of a phase transition. Sethe pointP=(iy,i,, ... ,ip) to the nearest-neighbor site in
tion VIl is devoted to a discussion of the dynamical proper-the u directionP+ u=(iy, ... i,+1,...ip). Note thatin
ties. Finally, in Sec. VIII, we summarize the main results andEg. (2) each link is counted only once. For each link we sum
discuss some peculiar features of the present model. all the possible groups ¢f spins out of the ® spins located
at nearest-neighboring sites of the lattieeth p<<2M). The

IIl. THE SHORT-RANGED p-SPIN MODEL final expression fof¢; is given by

D

The present model is a short-range generalization of the
multispin interaction mean-field Ising spin glass defined by

[15,16 Hlink: _k§—:

e L. : . i i (g, ..., ag by, ... by_ 1)
" (il,izg..,ip) Jiaig, 0T+ i () X
where the spingr;, 1<i<N (N is the size of the system X0 oh - op 0 Pop -UE;‘:. 3
can take the values1 and the\]ili2 ,,,,, i, are quenched
random variables with zero mean and variapt§2NP~1).
. . . . h I (al ..... Ay 'bl’ - ’bp*k) d .
In Eq. (1), all possible multiplets op spins interact through The couplingsJ; are ranaom vari-
the random couplings; ;, .. ; . Consequently there is no ables(which take the values 1) uncorrelated for different
spatial dimensionality and the model retains its full mean-inks (P,u) and sets op spins @;, . .. a,b1, .. . Pp_i).

field character. In order to go beyond mean-field theory we2ther versions of the model (for instance,
need to suitably modify the model introducing short-rangedd\aL P+ P = @z, @by 1), e, transla-
interactions in a finite-dimensional lattice. A possible way totional invariant disorderare also possible and they could
modify Eq.(1) is to consider only links which couple nearest have different properties.

neighbors in a finite-dimensional regular lattice. For in- As we observed in the Introduction, the present model has
stance, we could locate the spins in the vertices of the latticeeceived considerable attention quite recently. A preliminary
and consider only a certain set of triangl@s=3), a certain  short account of our work was presented[ir]. In three

set of squaresg=4), and for a genergl, only a certain set dimensions, an exhaustive numerical study of the statics and
of plaquettes containing spins of the lattic¢17,18. In the  the dynamics has been done in the ce4,p=4 [12]
presence of quenched disorder, such constructions have beehile the caseM =3,p=4 has been studied {13]. So the
considered in several casgk9—21]. In particular, in[21] a  main results on this modeékxcept[11]) were obtained for
simple cubic lattice withp=4 was studied. Although freez- the p=4 model. The study of the Gaussian propagators
ing behavior was observed, no evidence of a finite-around the mean-field limiM—o as well as the M ex-
temperature transition was found in three dimensions. Unforpansion were considered [ihi4]. The case we study here has
tunately, this type of model with binary exchange couplingsthe crucial property that the HamiltonidB) does not have
has a large ground-state degeneracy causing strong crossotlee symmetry under time revers@ke., the global symmetry
effects(due to the presence of a nontrivial zero-temperaturer,— — a;, Vi).
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Here we will present exhaustive results for the chse (i) Change configuration at fixed temperature:,i)
=2, p=3 in D=4. We have chosen these parameters for—(C',i) with probability
the following reasons.

(i) p=3. This is the simplest case that lacks time-reversal P[(C,i)—(C’,i)]= min(1,exd — B[ H(C')—H(C)]}).
symmetry. We expect in this case clearer results about the (5)
existence of replica symmetry-breaking transitions in short-
range systems. (i) Exchange configurations of two systems at tempera-

(i) M=2. This is the simplest nontrivial case. Larger turesg;,B;: {(C,i),(C",j)}—{(C’,i),(C.j)} with probability
values ofM require always more computational effort.

(i) D=4. To be sure that we find a finite-temperature P[{(C,i),(C’,j)}—{(C",i),(C,j)}]
phase transition, we have studied a large dimensionality

compatible with a reasonable computational effort. =min(1,exd — (8= Bj))[H(C) —H(C")]}.
For p=3, M =2 the general Hamiltonian Eq2) reads (6)
\% D
_ i, i ite, | i, i i ite The first type of move is the usual change of configuration
H= 21 /;1 (J{11001020; *+I({10101020, * at fixed temperature in the Monte Carlo method. The second

_ o _ _ o _ move prevents the system from getting trapped in deep meta-
+ I 1010y oy g ohoy oy %), (4)  stable minima. With this algorithm, configurations which are
far from each other can be reached by allowing a single copy
where the é,;u=1, ... D) denote the different unit vec- of the system to extract energy from other copies through a
tors in aD-dimensional lattice. Thd’s are binary uncorre- coupling mechanism ste@), Eq. (6) induced by the dynam-
lated random variables and we will consider periodic boundics itself. Plainly speaking, the rest of the copies or replicas
ary conditions. play the role of an external bath for a given copy. If a given
Note that the mode{4) has three spin interactions. One copy remains trapped in a deep minima of the free energy, it
would simply expect the transition to belong to the class ofcan escape by extracting energy from the rest of the copies.
¢° theories. As we will see in the following sections, there isThe full Markov chain reaches thermal equilibrium when all
indeed a phase transition occurring in the present model. THemperatures are equally occupied and for each temperature
absence of time-reversal symmetry in this model has crucighe conditioned probability distributio(Cli) is a Boltz-
implications on the type of phase transition. We anticipatenann distribution at temperaturegl/ In this way one simu-
that the transition is related to the breaking of ergodicity atates the model at different temperatures in the same run
low temperatures, a consequence of the breaking of replicahile being always in thermal equilibrium at different tem-
symmetry, the crucial symmetry to describe strongly disorperatures.
dered systems. We will try to clarify and give evidence on The time needed for the Markov process to reach the sta-
this point in forthcoming sections. tionary distribution(i.e., the thermalization timedepends
mainly on the choice of the set of temperatures and also on
the ratio between the number of moves of the fi{ggtand
second typd6). To solve the first problem, we have chosen
We have studied the model in four dimensions using the set of temperatures equally space@i1/T in such a way
parallel tempering metho®2,23. This is a good numerical that moves of the second tyg6) do not occur with a too
method to equilibrate disordered systems at low temperasmall probability at low temperatures. On the other hand, to
tures. Contrary to the simulated tempering methad,25, uncorrelate the configurations as much as possihlerder
in this algorithm it is not necessary to determine the freeto explore maximally distant configurationg is convenient
energy at different temperatures to reach equiprobability irthat the copies reach high enough temperatures. This is ac-
the occupancies of these temperatures. Although the parallebmplished by enlarging the set of temperatures in the simu-
tempering is a very efficient method to surmount energy barfation up to twice the value of the critical temperature. For
riers, it is not clear how good the performance of the algothe present model we simulated 25 temperatures ranging
rithm is in the presence of entropy barriér., when relax-  from T=2.0 up toT=>5.0(as we will see, this corresponds to
ation to equilibrium takes place along narrow channels om window of temperatures covering the region @75
gutters in phase space —2T,). As previously remarked, a good thermalization can
The implementation of this algorithm is quite easy. It hasbe achieved by choosing an appropriate number for the ratio
been widely explained in the literatuffor instance, see the between the number of tempering moves of the first and
reviews[23,26,217) and we will limit ourselves to sketch the second type. If the number of moves of the second type is
main steps of the algorithm. We consider a seNgfcopies  too small, then the system is not able to efficiently decorre-
or replicas of the same system that stay at different temperdate and only a small number of excursions into the high-
tures (T;; i=1,... Ny). Each copy or replica is then speci- temperature region are performed. In the other extreme, the
fied by a pair C,i), whereC denotes the microscopic con- system decorrelates too fast and does not efficiently sample
figuration (i.e., the values of all the spihsand the the landscape at a given temperature. We have tried several
temperatureT,; of the copyi. We can then construct a Mar- schemes intermediate between these two extremal cases and
kov process in the space of configurations plus temperaturege have found that one move of the second type for each ten
which satisfies ergodicity and detailed balance by allowingmoves of the first type is a good compromise which effi-
the following moves. ciently thermalizes reasonable sizes.

Ill. THE NUMERICAL ALGORITHM
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FIG. 1. Energy versus temperature=3,4,5,6 correspond to FIG. 2. Specific heat versus temperaturtzf(3,4_f,5,6 correspond
long dashed, short dashed, dot, and solid lin&sror bars are to long dashed, short dashed, dot, and solid )inEsror bars are
shown forL=6. shown forL=6.

We did extensive simulations for=3,4,5,6 with 2° later, T,=2.62). At T, the specific heat is continuous so we
=32768 MCS [ =3,4) and 28=262144 (=5,6) MCS at  €xpect the specific-heat exponento be negative.
each temperature. For sizes 3,4,5,6 we studied 1000, 600,
300, 100 samples, respectively. A preliminary study for a set V. THE ORDER PARAMETER
of five samples showed that this number of steps was enough
to reach thermal equilibrium for the selected sizes for the
range of temperatures studied. This preliminary study turne . I
out to be crucial to determine the smallest range of tempera- e temporal freezing of the local variablgs our case, the

tures which allows the system to equilibrate. If the range ofSpinS of the system. In the general framework of spin-glass

temperatures selected extends down to too low temperaturetgleory the o_rder parameter Is comp_ute_d through the introduc-
on of replicas in the system. This is the natural way of

then thermalization is hardly achieved. This means that th troducing th i fa dist bet i p
full Markov process associated to the parallel tempering a|introducing the notion of a distance between two configura-
tions in phase space. We take two replicas of the same sys-

orithm does not reach the stationary Boltzmann solution, , ; . e . .
g y {ai, 7} [i.e., two identical Hamiltonians in Eq4) with

Then, there is no guarantee that thermalization is achieve}?m ) S . '
either at low or at ﬁigh temperatures identical realization of the couplingss]. Then we define the

global overlapQ between the two replicaPsIQ:EiN:lai Ti
and evaluate its probability distributid?;(q) averaged over
the Gibbs measurg §)
Preliminary research of the evidence for a phase transition
includ.e.s the study of the temperature behavior of _extensive Py(q)=(8(q—Q)). 9)
guantities such as the internal energy or the specific heat. In
Figs. 1 and 2 we show the internal energy and the specific N ] N .
heat averaged over the samples for different sizes as a func- In our specific model the overlap INQ=ZX_ (o7
tion of temperature. The enerdy and the specific hed®  + 0373), Wherea';, 0 and 7y, 7, occupy the sité in the two
were computed using the expression different replicas, respectivel\?;(q) gives the probability
that two equilibrium configurations; , 7; have an overlap;.
N According to the mean-field scenarithe validity of which

It was shown long ago by Edwards and Anderson that the
ppropriate order parameter for spin glasses is a measure of

IV. THERMODYNAMIC OBSERVABLES

E=(H), @) we would like to check for the present mogeérgodicity
breaks at low temperatures and the phase space splits up into
2 — a large number of single ergodic components or states. The
C= W“H )= (H) ). (8 barriers separating these components diverge with the size of

the system suggesting that a symmetry is broken. This sym-
_ metry is generally referred to as replica symmetry and it is
In what follows,( ) stands for Gibbs average and for ~ the symmetry under the group of permutations of a finite
disorder average. We note the absence of any jump in theumber of replicas. Somehow, this symmetry is artificaedl-
internal energy as well as divergence or jump of the specifitually, it emerges from the use of the replica trick, a general
heat. This is a general result in phase transitions in stronglynethod to deal with the averaging of the logarithm of the
disordered systems and also applies in the present model. Avartition function in disordered systen$But its physical
important feature in Fig. Zalso observed in other studies meaning is quite appealing. Different equilibrium configura-
[12]) is the presence of a maximum in the specific heat at @ions o, 7; can take different values according to the basins
temperature £3.2) much higher thaT, (as we will see of attractions(corresponding to different ergodic compo-
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nent3 to which they belong. The functioR;(q) is highly T T T
nontrivial and this is a signature that different configurations 08 L
quite far from one another in the phase space contribute with :
a finite weight to the equilibrium partition function. Conse-
guently, different states always have the same free energy, 0.6
internal energy, and entropy per site but they differ only in
the structure of their typical configurations. This is signaled
by a nontrivialP;(q) distribution(i.e., with several peaks at 0.4
different values ofy).
Another general consequence of the splitting up of the
phase space into different states is the possible existence of 02
chaotic effects in the equilibrium phag28,29. A small per-
turbation in the Hamiltonian can change the shape of the
states as well as reshuffle their Boltzmann weights. After
perturbing the Hamiltonian, the new configurations can be
very different from the initial ones. One consequence of this
effect is the existence of non-self-averaging quantities. In FIG. 3. First momenfq] versus temperaturd (= 3.4,5,6 corre-
particular, if we change completely the microscopic realiza—spond io iong dashed. short dashed. dot. and solidili’&;s)r bars
tion of the disorder in the original Hamiltonidfor instance,  _ o chown fol.=6. T
by changing the couplingg in Egs. (3) and (4) [31]], the
new equilibrium states differ completely from the previousihe Edwards-Anderson parameféiie maximum value ofj
ones. In this case we do not add energy to the syste® g ch thatP(g) #0] andm s the replica symmetry-breaking
new and the old states always have the same energy per sité;rameterthe size of the blocks in the breaking ansatz, see
but the_ reshuffling of the Boltzmann weights of the d|ﬁerent[30] for general introductory textbooksin continuous rep-
states is enough to change completely the form oftf@).  |ica symmetry-breaking transitiorgz, vanishes af, but
Then, the Py(q) is strongly non-self-averaging, a result i, first-order replica symmetry-breaking transitioggs, is
which has been proved in mean-field theory and which W&jnjte at T, andm(T.)=1. In both cases there is no jump in
would like to check also in short-range systems. ][q].
The purpose of this section is to show how the study of “the results for the spin-glass susceptibility are more in-
the P(q)=P;(q) averaged over the disorder can yield evi- teresting. Experimentally, spin glasses show a divergence of
dence for a phase transition in the present model. In the nexke nonlinear susceptibility,, defined through the expansion
section we will show that the non-self-averaging character of
the P;(qg) can be used as an independent check for the tran- M (H)=xoH + xH3+ O(H®) (13)
sition. 0 n '
A good way to characterize the(q) is through its mo-
ments, in particular the first momegt the second cumulant
which directly yields the spin-glass susceptibilipgg, the

It can be generally showi80] that the nonlinear suscep-
tibility is related to the spin-glass susceptibility defined in
. . . Eq.(10). Although the linear coefficieng, in the expansion
\?vlzevggﬁij(’tr?eni\tgfa;g‘](de)r] Bafrgmfe térPMore prr]emsgly, i (13) does not show any indication @t,, the behavior of the
- a)1=/daf(a)P(a) [whereP(q) nonlinear termy, is singular atT.. In mean-field spin
=P,(q)], then we have glasses with continuous transitioggg shows a power-law
divergence af .. Contrarily, in mean-field spin glasses with

Xso=VI(a-[a])?], (10
e —
[(a—-[q)°] g ]
Y=—"""#¥+— 11
[(a—[a)?" (0 .
1 [a—[a)"]
=23 ———2]. 12 £
2( [(q—[a)?F (12 g
U)50_

In Figs. 3, 4, 6, and 7 we shojq], xsg, Y, andZ as a
function of temperature for different sizes. In Fig. 3 we show
the first moment as a function of temperature. In the presence
of time-reversal symmetryq] vanishegas well as the skew-
nessY) but not in the present case. Note that the curvigbf 0
as a function of temperature is smooth without any sign of a
jump or discontinuity. In mean-field spin-glass transitions
(continuous or discontinuolghis result is expected because  FIG. 4. ysg versus temperature. From bottom to top,
the jump in[q] is proportional to (+m)qgga, Wheregg, is =3,4,5,6.
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FIG. 5. Finite-size scaling of the spin-glass susceptibility. Our

data are compatible witby:%,v=§. FIG. 7. Binder parameter versus temperature. From bottom to
top in the high-temperature phades 3,4,5,6.

discontinuous RSBygg shows a finite jump af.. This last
feature has been claimed to be the explanation for the violaBinder parameter as a function of temperature. Because of
tion found in experiments at the glass transition for one ofthe adimensional character of these quantities, one expects
the two Ehrenfest relatiori82]. Below T, xsgis infinite in that they should be universal in the critical point and related
both cases. This result is related to the nontrivial character dp the amplitudes of the renormalization-group flow equa-
the P(q) which has contributions from different values@f  tions. In the large volume asymptotic regime the value of the
In Fig. 4 we showys for different sizes as a function at skewnessy and the Binder parametet should be volume
Indeed, our results in Fig. 4 show an algebraic divergence ofidependent af.. Consequently[T. should manifest as a
the spin-glass susceptibilitysg and a least-squares fit of the common crossing point of the curves corresponding to dif-
data in the high-temperature regiomhere finite-size effects ferent system sizes. A common crossing point can hardly be
are negligible yields ysg~(T—T.)~” with T,=2.63 and identified in Figs. 6 and 7. Nevertheless, the fact thahdZ
y=1.0. A finite-size scaling plot of the data faisg/L2~7  do not vanish at low temperatures is a sign of a nontrivial
~(T—TLY is shown in Fig. 5 withv=2, »=13. Thisis  low-temperature phase. Actually these two figures yield little
in agreement with the exponents relatigr: (2— 5)v and  information about the transition and it is hard to guess what
with the previously estimated value of Using the hyper- IS the character of the phase transition. Let us note that strik-
scaling relationr=2— D v we geta=— 2 in agreement with  iNgly similar results were obtained for the Ising spin glass in
the absence of any singularity or jump in the specific heaf Mmagnetic field33]. _ o
(see Fig. 2 An independent measure ofwill be obtained in Contrary to what is found in models with time-reversal
the following section. Anyway, from these first data, we maySymmetry, theP(q) is not symmetric aroundj=0. This
conclude that the divergence gk is related to the diver- €xplains why[q] and the skewnes) are nonzero. More-
gence of a correlation length &t . over, the fact that/ <0 is related to the asymmetric charac-

Figures 4 and 5 are the first evidence for a phase transier of theP(q). This is clearly shown in Figs. 8, 9, and 10.
tion in the model. Figures 6 and 7 show the skewness and thfeigure 8 shows theé>(q) for the largest simulated size
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2 3 4 5 0 0.2 0.4 0.6
T T=2.0,2.353,2.66,3.077,4.0 for L=6
FIG. 6. Skewness versus temperature. From top to bottom, FIG. 8. P(q) for L=6 at different temperaturerom left to

=3,4,5,6. right, T=4.0,3.077,2.66,2.353,2.0).
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1 I a 0.05 | _
0 L - 0'002.0 25 3.10 35 40
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T=2.66
] FIG. 11. Paramete6 for L=23,4,5,6 (open circles, triangles,
FIG. 9. P(q) at T=T, for L=3,4,5,6. For the sake of clarity, giamonds, and crosses, respectiyely

we show the error bars only far=6 and only for some values of
g define a sample-dependefie., J dependentsusceptibility
through
=6 at different temperaturéb=4.0, 3.077, 2.66, 2.353, 2.0. 3
Note that aboveT, the P(q) is Gaussian and develops a xX36=V({(a?)—(a)?). (14)
nontrivial shape at low temperatures with a nonvanishing tail . . _ )
which extends down to values ofclose to zergthe pres- Note thatysg is different fromysg defined in Eq(10). It
ence of this tail is clearly appreciated plotting the verticalcan be proved34] that the following relationship is fulfilled
axis in a logarithmic scaje in spin glasses below, :

Except for the fact that thB(q) is not symmetric around
g=0, this behavior is reminiscent of what is observe{lg|
for the p=4 case. Figures 9 and 10 show tRéq) for dif-
ferent sizes al=2.66 and afl =2.0, respectively.

_ (X202~ (x30)? 1
VE(q—(q) - (xda? 3

(15

where, as bef0r66 means average over the quenched dis-
order.

New .evidence for the existence of a phase transition can The interest of defining the paramet@iis that it vanishes
be obtained from the study of the sample-to-sample fluctuaahove the transition temperature in the disordered phase
tions of the order-parameter functidhy(q). Our main ob-  where sample-to-sample fluctuations of fgq) disappear
servation originates from recent results obtained by Guerrgy theV— o limit. Similar information to that obtained from
[34] Guerra has shown that Sample-to-sample fluctuations (Eq (15) can also be ga‘[hered from the Samp|e-t0-samp|e
the cumulants of the order-parameter distributRyfq) are  fiyctuations ofx2s,
Gaussian distributed in the thermodynamic limit. Let us now

VI. NEW EVIDENCE FOR THE TRANSITION

3 T T T T T T T T T T T T

A (X292~ (x20)?

— (16
(x30)

In principle, Eq.(16) also yields nontrivial behavior in the
low-temperature phase even thoughcontrast taG) it does
not necessarily convergén the thermodynamic limjtto a
temperature-independent value. Both parametarar{d G)
are good indicators of the transition although oAlgives a
precise answer to the question of whether the order param-
eter is self-averaging or not. The read@®a| is thatG may
be finite even when the numerator and denominator in Eq.
(15 vanish. ActuallyA is the numerator of so it gives
precise information as to whether self-averaging is satisfied
[36].

Note thatG is a parameter which plays the same role as
the usual Binder parametgiin ferromagnets and is givein

FIG. 10. P(q) at T=2.0 for L=3,4,5,6. Errors are shown for the V—o limit) by G(T)=(1/3)[1-0O4(T—T.)], where
L=6, for some values o Oy is the Heaviside theta function. In RSB transitions, Eq.

T=2.0
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100000

FIG. 14. C(t) at 3=0.26 (+), 8=0.28 (X), 8=0.30(*), B
=0.34 (1), B=0.36 (M), for one sample with.=20.

FIG. 12. ParameteA for L=3,4,5,6(open circles, rhombi, tri- breaking t_akes place b_e_loﬁle. This supports the result that
angles, and crosses, respectiyely the breaking of ergodicity is intimately related to the non-

self-averaging character of the order parameter. This result is
(15) goes to zerdas the size/ increasesas 1V for T>T, in c_ontradiction with heuristic arguments by N_ewman and
but converges to a finite value faf<T,. We expect the Ste|n[37_], who have suggested that self-averaging should be
critical temperaturéwhere RS breakgo be signaled by the @utomatically restored in short-range systems due to the
crossing of the different curves corresponding to differentranslational invariance symmetry of the lattice.
lattice sizes.

Our results forG and A are shown in Figs. 11 and 12. VII. THE DYNAMICAL EXPONENT  Z

Both figures show essentially the same result, i.e., the curves

for G and A for different sizes display a common crossing dynamic phase transition in the model, we would like to

paint located _appr(_)X|mater atcz.Z'GB In agreement W'Fh learn more about its nature. In particular, we would like to
the result derived in the preceding section from the diver-

; L2 : clarify whether the relaxation tim@vhich is analogous to the
gence of the spm—gle.lss susc.ept|b|llty. AssumlngAfor the Pashear viscosity of real glasgeshows an anomalous behavior
rameterG the following scaling behavioG(T)=G(L/¢)  in the vicinity of the glass region. It is well known that an
with é~(T—T) ™", then G/dT)r_7 ~L". InFig. 13we  activated behavior in the relaxation time is one of the main
show the scaling behavior féx andG. The scaling plots for characteristics in real glasses. On the other hand, a power-
A and G yield a more precise fit to the critical exponemt law divergence of the relaxation time is a signature for a
because it involves only one free paramefBryas obtained second-order phase transition where a massive mode van-
looking at the crossing of the different curyeé good esti- ishes.
mate forv yields v=£% for both A andG but precision is not We have computed the equilibrium time correlation func-
good enough to exclude a slightly smaller valsech asy  tion C(t) at several temperatures above the estimated
=1). The value$ is in good agreement with the one ob- C(t) is defined through
tained from the divergence of the spin-glass susceptibility.

Figures 11 and 12 clearly suggest that replica symmetry

Now that we have corroborated the existence of a thermo-

1o o
C(H)=y 2 [oa0)ar(D)+ox(0)ay(D]. (A7)
0.35 — . T r

Compared to similar studies undertaken in ge4 case
[12,13, the analysis in the present case turns out to be more
difficult. This is due to the fact that in the absence of time-
reversal symmetry in the Hamiltonia@(t) does not decay
to zero and there is one more unknown paramg@{re)].

To have a reasonable estimate zfwe did two types of
measures. On the one hand we meas@@d and fitted it to
a stretched exponential form

03}
025
02 \
0.15
0.1F

005 | C(t)=q+(2—q)exp(—(t/7)P), (18)

T with three free parameterg C(«) ], 7 (the relaxation timg
15 20 and B (the stretching exponentNote thatC(t) is normal-
ized such thatC(0)=2. Figure 14 shows some of the fits
FIG. 13. Parametera,G for different sizesL=3,4,5,6 versus Which turn out to be quite good. In this way we got some
(T-2.62)L%2 estimates forr which unfortunately are not very precise, to
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-36 ; - g - - . to understand how short-range effects modify the AGM
38l "] mean-field scenario for the spin-glass transition. Moreover,
. the Hamiltonian for the present modeéM=2,p=3) has no
- + 1 time-reversal symmetry. In the presence of a thermodynamic
-42} N 1 transition, this lack of time-reversal symmetry has far reach-
aal + | ing consequences on the nature of the transition.

m 1 We have establishedhrough finite-size scaling methods
A6r ++++ 1 the existence of a phase transition without latent heat and
s +++#+ ] with an algebraic divergence of the spin-glass susceptibility.

On the other hand, we find indications that the relaxation
St time diverges according to an algebraic power law as in or-
szt . dinary continuous phase transitions excluding the presence
54 , . , . ) . of an activated relaxation time.
0 0.1 02 03 04 035 0.6 0.7 Consequently, we are led to the conclusion that the first-
t order character of the transition present in the mean-field
FIG. 15. Energy versus ®% at T=2.62 for one sample with limit (M—2) is lost in finite dimensions. In particular, our
L = 20. resultsv=%, p=3, y=1, z=4.5 yield reasonable fits to all

the data. Moreover, these exponents yield a negative value
determine the value of. To be more precise, one should for the specific-heat exponent in agreement with the fact that
include a power-law ternt~ ¢ multiplying the exponential there is not jump or divergence in the specific heal at
term in the fitting function(18) as was done by Ogielsky in Note thata vanishes in mean field so the main effect of
the study of the three-dimensional Edwards-Anderson moddinite-dimensional corrections is to decrease the value.of
[38]. Unfortunately, including a term of this type in EQ8) A negative value fora was apparently also obtained fpr
introduces too many free parameters i@¢t), making fits =4 in three dimensions foM =3,4. Although large size
poorly predictive. Nevertheless, from Fig. 14, we may con-simulations inp=4,D=3 [13] yield a smaller value ofv
clude that relaxation turns out to be very slow closd to (compatible withv=2/D and hencexr=0), we must exclude
Our values estimated for the relaxation time exclude anyhis possibility from the absence of any jump in the specific
activated behavior. This excludes the existence of a viscositjieat atT,.
anomaly as well as the existence of two step relaxation pro- Quite long ago, Gross, Kanter, and Sompolinsky, from the
cesses in this model. The same conclusion was reached in tBelution of the mean-field Potts gla§é2], suggested the
p=4, D=3 case by studying th€(t) [12]. possibility thaty=2/D could be valid in finite dimensions
An estimate forz can be obtained by studying the off- similar to what happens for pure systerfwith the corre-
equilibrium decay of the order parame{&@] or the internal  sponding relationv=1/D). In particular, the explanation for
energy[40]. This last case has been applied also to the studshe rounding of the phase transition due to finite-size effects
of structural glass modelstl] as well as in thep=4 case would be very similar to the explanation valid in first-order
[12]. In this case, one studies the decay of the internal energyansitions in pure systenig3,44 but now modified to ac-
starting from a random initial configuration &@=T. and  count for the presence of randomness. If the transition in
using a fit to a power-law behavior of the following form: finite dimensions were first order, then we would expect the
_ N validity of the relationv=2/D as well as the absence of
E()=E(x)+At" (19) upper critical dimension. Our numerical results tend to dis-

Note that this is an off-equilibrium measure which is ex- ca'd this possibility.

pected to yield the equilibrium dynamical exponent. Under NOte that the model we are considering here has no time-
the assumption that hyperscaling is valid, and using simpl&€Versal symmetry. Consequently, any thermodynamic tran-

scaling relations, one obtains the exponents relakior(d sition cannot be associated with the breaking of an original

— 1/)/z. In Fig. 15 we show the decay of the internal energysymmetry of the Hamiltonian. In this respect, the transition

at the estimated’,. A good fit is obtained with=0.55 W€ are facing closely resembles the mean-field transition of
+0.1. which yield§z4.5i 1. This value forz is very si.mi- spin glasses in a magnetic field. We believe that the type of
lar to,the one found in the Edwards-Anderson model in fourfransition presented here is one of the most clear examples of
dimensions. Still, in this model the divergence of the relax_second—or(jer phase transition in s.trongly disordered systems
ation time is not fast£v=3) if compared with that of the where replica symmetry breaks. Figures 11, 12, and 13 offer

d evidence for this result.
M=3p=4 model[12,13 (z=7, zv=6+1). The value of 99 . .
70 beiFr)lg not very large ir(1 our modéht Ie:zlst compared to Finally, we would like to comment on the behavior of the
those generally found in spin-glass models in three dimen(-ammpy of the model as a function of the temperature. One

siong explains why we succeeded in getting very clean re_prominent prediction in the AGM scenario is the collapse of

sults through finite-size scaling for the existence of a phasg1e configurational entropy &t . Obw_ously,_ in the present
transition. Thermalization was easier to achieve. model we do not expect that the configurational entropy van-

ishes atT. since the transition is continuous. In Fig. 16 we
plot the total entropywhich are the sum of the configura-
tional and its intrastate pars a function of8 obtained

In this paper we have investigated the critical behavior ofniumerically by integrating the internal energy betweén
a three-spin model in finite dimensions. The motivation was=0 and 8. As B increaseqdata are shown betwegd~=0

VIIl. DISCUSSION
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15 ; ‘ - peratures close td, and depart from the linear behavior
again. Actually, this is what we expect from the presence of
the maximum of the specific hegEig. 2). Using the relation
C=T(9S/dT), we safely predict a breakdown of the linear
behavior afT=3.2 (8=0.31) where the entropy should start
1or 1 to form a plateau.

To conclude, we have found that short-range effects in
some class of modelsvith nontranslational invariant disor-
den cause the transition to become second order. The type of
transition should be the same as the one expected for the
081 | Edwards-Anderson model in a magnetic field. The main dif-
ference is that, in the last case, the parameter space contains
the temperature and the field while in the former case the

\L only parameter which controls the phase transition is the
00 . ‘ . temperature. This implies strong crossover effects in the
"0.00 0.10 0.20 0.30 0.40 critical region for the Edwards-Anderson model in a field

T due to the proximity of the zero-field fixed point. Such cross-

FIG. 16. Entropy of the model versus temperature. The continuOVer effects are not present in the present model, making the
ous line is a linear extrapolation of the last set of points. Data werdlétermination of the critical behavior much simpler. It would
obtained simulating a sample with=10. The arrow corresponds to be very interesting to extend the research of strongly disor-
the estimated value of.. dered spin models without time-reversal symmetry to other

cases, such as models with translationally spatial invariant

and3=0.32), the entropy becomes steadily linear and seemdisorder, to understand under which conditions the first-order
to extrapolate to zero at a finite value. A linear fit to the lastcharacter of the mean-field transition survives in finite di-
set of data yield$(,83)=5.78(0.364- 8), which vanishes at MensIons.

T.=2.75, a result strikingly close to the previously estimated

valge of'_l'C through fini?e-size scgling methods. This_ val_ue of ACKNOWLEDGMENTS
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